Sparse Bayesian Nonlinear System Identification using Variational Inference

نویسندگان

  • William R. Jacobs
  • Tara Baldacchino
  • Tony Dodd
  • Sean R. Anderson
چکیده

Bayesian nonlinear system identification for one of the major classes of dynamic model, the nonlinear autoregressive with exogenous input (NARX) model, has not been widely studied to date. Markov chain Monte Carlo (MCMC) methods have been developed, which tend to be accurate but can also be slow to converge. In this contribution, we present a novel, computationally efficient solution to sparse Bayesian identification of the NARX model using variational inference, which is orders of magnitude faster than MCMC methods. A sparsity-inducing hyper-prior is used to solve the structure detection problem. Key results include: 1. successful demonstration of the method on low signal-to-noise ratio signals (down to 2dB); 2. successful benchmarking in terms of speed and accuracy against a number of other algorithms: Bayesian LASSO, reversible jump MCMC, forward regression orthogonalisation, LASSO and simulation error minimisation with pruning; 3. accurate identification of a real world system, an electroactive polymer; and 4. demonstration for the first time of numerically propagating the estimated nonlinear time-domain model parameter uncertainty into the frequency-domain. Keywords—Bayesian estimation, variational inference, system identification, NARX model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse linear models: Variational approximate inference and Bayesian experimental design

A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feat...

متن کامل

Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identific...

متن کامل

Variational Gaussian Process State-Space Models

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...

متن کامل

Variational Bayesian Approach for Nonlinear Identification and Control

This paper studies the identification and model predictive control in nonlinear state-space models. Nonlinearities are modelled with neural networks and system identification is done with variational Bayesian learning. In addition to the robustness of control, the stochastic approach allows for a novel control scheme called optimistic inference control. We study the speed and accuracy of the tw...

متن کامل

Gaussian Covariance and Scalable Variational Inference

We analyze computational aspects of variational approximate inference techniques for sparse linear models, which have to be understood to allow for large scale applications. Gaussian covariances play a key role, whose approximation is computationally hard. While most previous methods gain scalability by not even representing most posterior dependencies, harmful factorization assumptions can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018